Reformation of Government R&D for Promoting Innovation in Japan

Hironori Nakanishi

NEDO Washington Office 2000 L Street, N.W. Washington DC

March 11, 2003

.

The Gap between R&D and Economic Growth

Changes in TFP and in average intensity of business R&D (1980s to 1990s)

5

History of Industrial Technology Policy

• 50's: Social and Economic Recovery

- Development of fundamental industries for economic reconstruction.
- Strategic technology introduction, funds for technological developments.

60's: Rapid Growth

- The vision of the 60's: self-development, advanced nation.
- Larger scale projects, critical technology R&D funding.

• 70's: Diversification

- "Intellectual" industry, deal with environmental problems.
- New energy & energy efficiency technology. VLSI collaborative R&D.

80's: Building of a Technology Nation

- R&D for Future generation industrial infrastructure.

90's: International contribution – strengthen industry competitiveness

- Globalization of technology policies to improve competitiveness
- R&D priority, innovation involving both science and business.

Recent Progress of Japanese S&T Policy

- June 1995 Law for Enhancement of Science and Technology
 Science and Technology Basic Plan(I;

 1996-2000)
- July 1997 Introduction of Evaluation Scheme for R&D
 "Innovation Research Group" (MITI)
- May 1998 Law for Technology Licensing Office
 Aug 1999 Japanese "Bahy-Dole" Provision
 Dec 1999 Japanese "SBIR" Program
- Apr 2000 National Industry Technology Strategy (P-A-G)
 Industrial Technology Enhancement Law

 June 2000 WG on Industry Technology for S&T Basic Plan
 - Jan 2001 Government Reformation
- Mar 2001 Science and Technology Basic Plan(II;2001-2005) 7

Science and Technology Basic Plan (March 2001 by CSTP)

Basic Concept

"S&T is the driving force of sustainable development and for pioneering the future of humanity."

Goals as a Nation through S&T

- International contribution through knowledge
- Global level competitiveness and sustainable development
- Nation providing security and high quality of life

9

Science and Technology Basic Plan (cont.)

1. Government R&D Investment ¥24T (\$200B) FY2001-2005

2. Strategic Prioritization of R&D

- Basic Science
- 4 areas: Life Science; Information and Telecommunication; Environment;

Nanotechnology and Material.

S&T System Reformation

- Expansion of Competitive Research Fund
 - Doubling the size of solicitation-type grant and introduction of overhead cost
- Mobilization of Human Resources
 - Introduction of tenure system for national laboratories
- Support for the Industrial Technology
 - > Enhancement of Government-University-Industry Partnership
- Reformation of National Universities
 - > Development of independent administration

What is NEDO?

New Energy and Industrial Technology Development Organization

HISTORY:

October 1980 Established as New Energy Development Organization

Funding organization/Affiliation with MITI

October 1988 Added industrial technology R&D

(New Energy and Industrial Technology Development Organization)

October 2003 Re-established as an independent administrative institution

BUDGET: 256 Billion Yen (FY 2003) (\$2.1Billion)

STAFF: 774 (As of July 1, 2002)

Overview of Competitive Grant " Teian-Kobo" System

- Established in 1995 by METI
- Objective

To foster R&D activities which are considered

highly promising and innovative as the "seeds" for future industrial technology.

• Modeled after the US competitive grant system

(e.g., solicitation, peer-review system)

Other ministries also introduced competitive grant systems

\170Billion('96)? 294('01) ? 349('03)? ? 600('05)

Various Mechanisms of Support of Competitive Grant System

Research grant for young researchers

High-risk, pre-competitive industrial R&D assistance

International collaborative research projects in energy/environmental fields

15

"Industrial Technology Development Support Program"; Support for Pre-competitive R&D

- "Industrial Technology Development Support Program"
- Similar to ATP
- Assist private sector to perform pre-competitive, high-risk R&D which would lead to new industry creation and solutions for social issues.
- Budget and number of projects:

	Budget (in Yen)	Number of Applications	Awards
FY1998	4.2 billion	93	40
FY1999	3.5 billion	154	36
FY2000	3.1 billion	183	34
FY2001	4.8 billion	185	38
FY2002	4.5 billion	100	35

"Industrial Technology Development Support Program"

- Cost-sharing:
 - Private companies >50%
 - Spin-off institutions from universities and research institutions >1/3
- Project period: 2 years
- Technology fields:
 - Life science, IT, environment, nanotechnology, energy, manufacturing, social infrastructure, cutting-edge technology
- Eligible cost:
 - Equipment, construction, supplies and material, engineering and design cost, salary, etc.

Total Projects in 2002: 105

19

Promoting Strategic R&D through "Program"

[Program]

- A program is a comprehensive package of policy measures, such as R&D, establishment of techno infrastructure, code and standard setting to accomplish a policy goal mainly by the technological breakthroughs.
- It includes coordination and organization of similar R&D under the same policy goals, as well as collaborating multiple R&Ds.

[Purpose]

- Improve performance of government R&D investment and accountability Avoid duplicate or unnecessary investment
- Clarify the role of government for challenging a socio-economic problem
- Common understanding for the future goal
 Policy Technology road mapping
 Attract R&D investment from the private sector

	Recipient	Term, Scale	Selection Proce	S valuation	Objective
Project Type (Contract R&D)	Consortia	Up to 5 yrs	Request for Proposal/ Selection Committee	-Ex-ante -Interview -Ex-post -Follow -up	Pre-Competitive Long-term (Extremely High risk, Large scale
Cooperative Agreement Type (Theme-given, Re-coupment)	Individual Company	Up to 2 (+1) yrs ? 100M/year Cost Share 50% Corporations 67% S&M	Teian-Kobo/ Merit-Review	-Ex-post -Follow -up	Pre-competitive Mid-term (Could be commercialized within several years
Basic Research	Universities Research Institutes	Up to 2 (+1) yrs '? 30M/year Grant (100%)	Teian-Kobo Merit-Review	-Ex-post	Basic Researd (Individual ideas)

R&D Programs in FY 2003 (¥129.4B)

[Life Science] ¥19.3B

- Fundamental Biotechnology Research Program for Promotion and Maintenance of Health (¥12.11B)
- Biological Function Application Cyclical Industry System Creation Program (¥4.12B)
- Program for Development and Advancement of Medical Treatment Equipment for the Extension of Life and Health (¥1.89B)

[IT] ¥43.0B

- Next Generation Semiconductor Devices and Processes Technology (MIRAI) program (¥14.63B)
- Program to Advance Information and Telecommunication Infrastructure (¥5.30B)
- · Promotion of Software Development in Information Telecommunication Infrastructure Program (¥1.00B)
- Next Generation Display Technology Development Program (¥2.21B)
- · 21st Century Robot Challenge Program (¥0.09B)
- New Production Technology Program (¥2.38B)
 Program for the Advancement of Space Industry
- · Program for the Advancement of Space Industries (¥7.82)

[Nanotechnology Materials] ¥12.4B

- · Nanotechnology Program (¥7.12)
- Program for Generating Innovative Materials Industries (¥5.24)

[Environment] ¥54.8B

- Comprehensive Program for Chemical substance evaluation and management ¥2.01B
- 3R program (¥1.54B)
- · Innovative Global Warming

Countermeasure Technology Program (¥10.12B)

- Solid Macromolecule Fuel Battery/Hydrogen Energy Utilization Program (¥15.95B)
- Energy Environment Carbon Dioxide Solidification/Effective Utilization Program (¥0.88B)
- Next Generation Low-Emission Automobile Technology Development Program (¥2.13B)
- Private Sector Aircraft Fundamental
 Technology Program (¥4.65B)

Contact Information

Hironori Nakanishi

Chief Representative Representative Office in Washington New Energy and Industrial Technology Development Organization (NEDO)

2000 L Street, NW, Suite 605 Washington, DC 20036 Tel: 202-822-9298

Email: nakanishi@nedodc.org

27

